OS-Climate

Technical Deep Dives

Heather Ackenhusen, Principal Technical Program Manager, OS-Climate

OS-Climate Technical Deep Dives

- Building a platform to rapidly accelerate the shift of global investment
 - *Away* from GHG-intensive and climate-vulnerable companies, technologies, and infrastructure.
 - Towards sustainable solutions which drive mitigation, resilience, and adaptation.
- Today's Deep Dive Sessions (will be recorded and shared)
 - Data Commons
 - Extraction/Transformation of Corporate and other Data from structured & unstructured sources
 - Physical Risk & Vulnerability Modeling
 - Portfolio Alignment: ITR (Implied Temperature Rise) Tooling and Methodology
- Tomorrow's Deep Dive Session (will be recorded and shared)
 - Transition Risk & the tools being contributed to the OS-Climate platform by Airbus: SoSTrades platform and WITNESS

Data Commons

OS-Climate - Technical Deep Dive

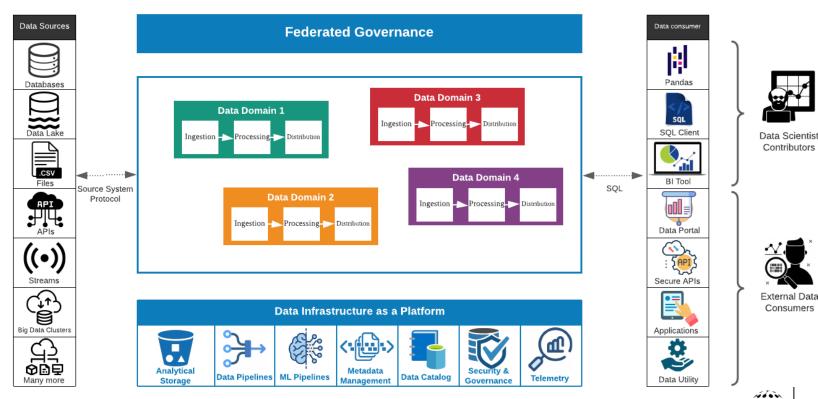
Vincent Caldeira, Chief Technologist (FSI), Red Hat Erik Erlandson, Senior Principal Software Engineer, Red Hat Michael Tiemann, Vice President of Open Source Affairs, Red Hat

Data Commons Agenda

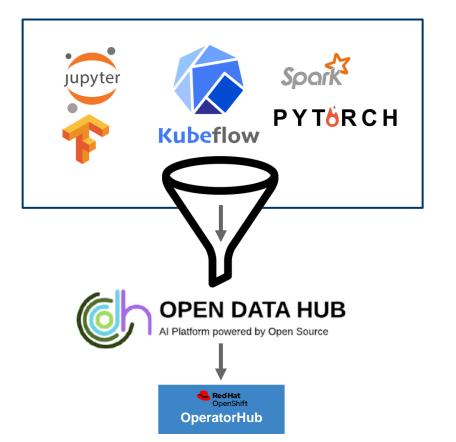
Platform Architecture Overview

- Data Commons platform overview: Overall data mesh architecture approach
- Data Availability: Enable collaboration through self-service data infrastructure
- Data Comparability: Manage data as a product leveraging a Data-as-Code approach
- Data Reliability: Manage data quality and transparency with automated and federated governance and compliance

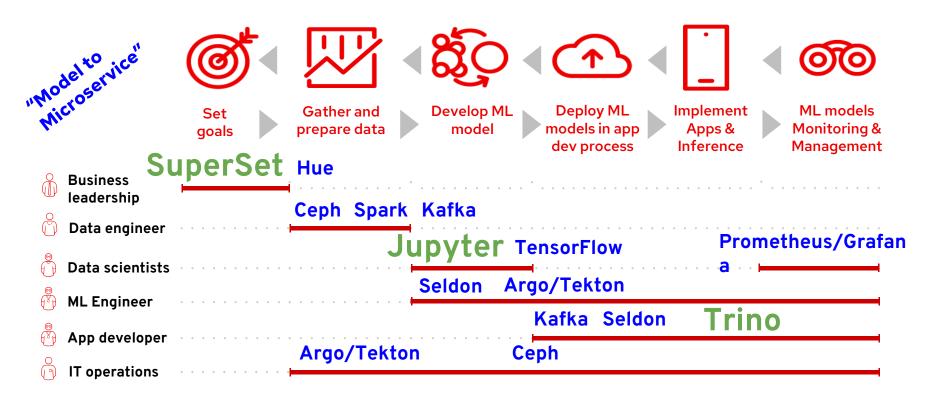
Demo


Roadmap

Platform Architecture Overview



Turning a "data mess" into a "data mesh"


Classification : Internal

Open Data Hub: 100% open source-based ML architecture blueprint with Red Hat® OpenShift® & broader portfolio as foundation

Data Science with ODH

Based on Open Data Hub and Operate First Upstream code enhanced with operational excellence

Open Data Hub

Community driven upstream meta-project demonstrating AI/ML platform on Red Hat OpenShift comprised of open source projects

Operate First (https://www.operate-first.cloud/)

Incorporate operational experience into Open Data Hub - operating software and services in the Open for our community members

OS-Climate Data Commons

Data science platform based on Open Data Hub and delivered as a cloud service on Red Hat OpenShift on any public or private cloud provider

Manage Data as a Product...

Data is managed as collections of related data aligned to business functions and goals, under a single owner stream that is responsible for governance of data created, provided, stored, transformed in and consumed

6677

I want to contribute proprietary data but need guarding against infringement on protections of datasets.

Data Provider

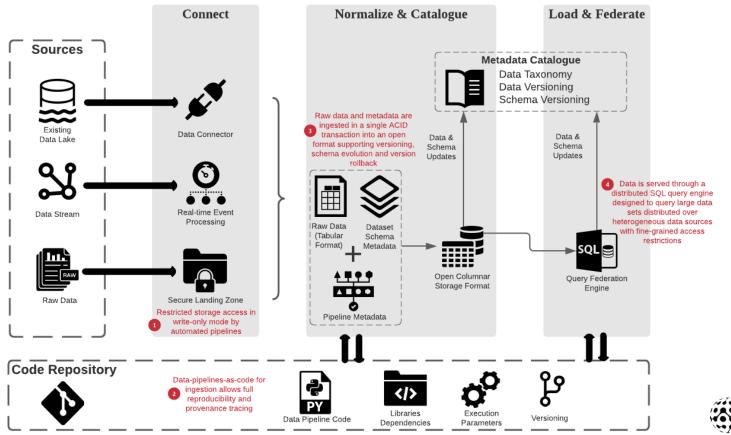
6699

I want to be able to integrate heterogeneous data sources quickly without having to stand my own infrastructure. 6699

I need tools for data preprocessing, feature engineering, and model training and validation but want to focus on solving problems.

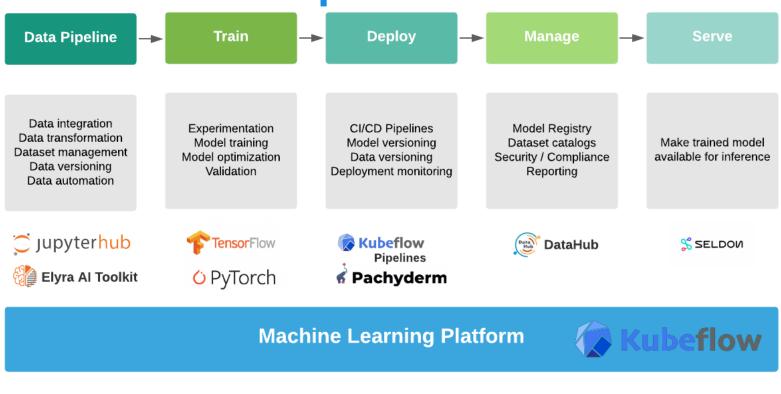
6699

To build trust, we need to have full auditability and transparency on the processes that are sourcing, processing and distributing the data.


Data Engineer

Data Scientist

Data Quality Engineer


... leveraging a Data-as-Code approach

Classification : Internal

OS-C

Leveraging Open Data Hub to stand up a Data Science platform

Managing data quality and transparency...

6699

For me to to compare information reported across different sources, I need the data to be tied to common referential.

Data User

6677

I need consistency of authorization management across the data pipeline to manage security of the data as it is used and distributed.

Data Provider

6699

Managing data versioning and associated data schema and catalogues manually is time consuming and prone to error making data discovery difficult.

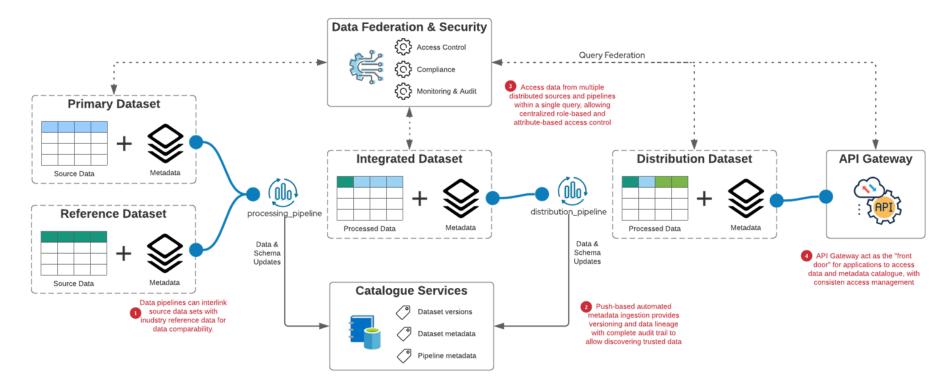
Data Engineer

Data Scientist

community.

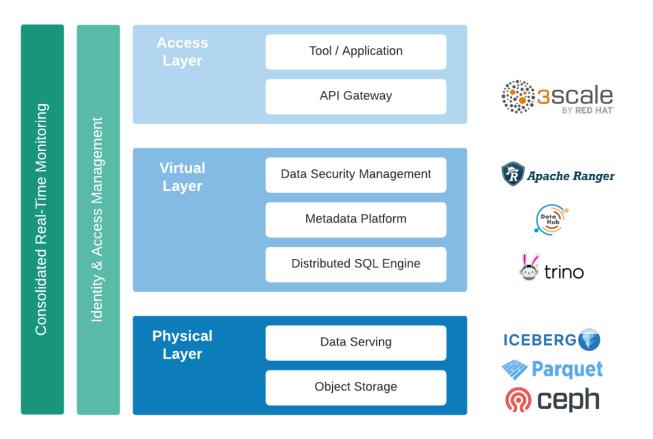
6699

I need to be able to integrate


data with various internal and

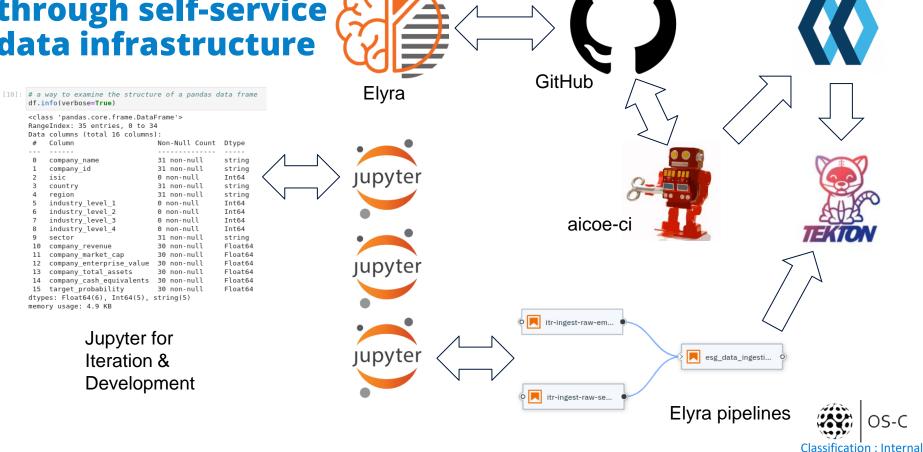
external tools for development

and also to support my users



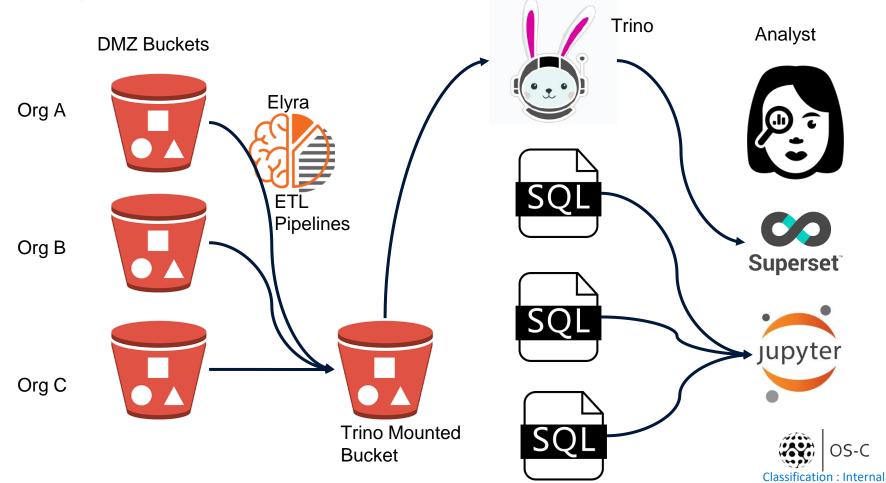
... with automated and federated governance and compliance

Data Management Architecture



Classification : Internal

Demo



Enable collaboration through self-service data infrastructure

quay.io

Data Ingest Model

Bonus Demo Video:

A deep dive into insights from combining GLEIF with the EPA's GHG Reporting Program (GHGRP) data within Data Commons

from Michael Tiemann, OS-Climate Project Lead & VP of Open Source Affairs, Red Hat

Click Here for Bonus Video password: osc-1201>>DeepDive

Please Use Raise Hand or Type Question in Chat For any unanswered questions, we will respond.

Data Extraction: Climate Metrics & Natural Language Processing

OS-Climate – Technical Deep Dive

Lea Deleris, Head of RISK Artificial Intelligence Research, BNP Paribas Ismail Demir, Data Scientist, Allianz IDS GmbH Jeremy Goh, Data Scientist, BNP Paribas Karan Chauhan, Data Scientist, Red Hat

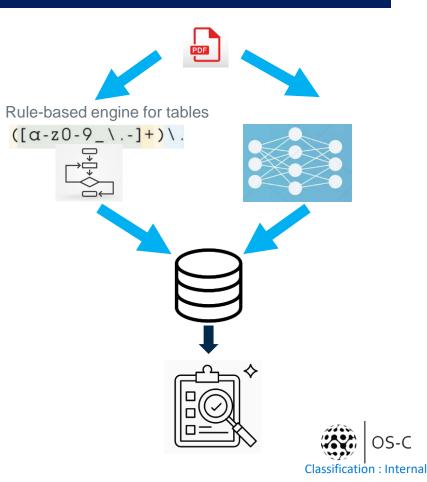
Data Extraction & Role of Natural Language Processing (NLP) in OS-C

Background

- From a climate perspective, precious information such as emissions levels, transition targets or asset-level commissioning or decommissioning are peppered throughout company's CSR and Annual report.
- In the NLP stream, our goal is to develop **algorithms that are effective at identifying this information** automatically, or at least well enough that it only requires human validation of the proposed information rather than tedious and costly human extraction.
- If we are able to develop such algorithms, ESG **data sourcing should be faster and easier** leading to a greater ability for banks and companies to measure and manage their transition and physical risk trajectories.

Vision for the NLP Tool

- Users can leverage OS-C's NLP toolkit to extract key climate data/metrics from CSR and annual reports of organizational entities.
- We are currently looking at GHG emissions, emission reduction targets and production figures.
- The NLP tool will scan and pull text/data from OS-C's Data Commons (e.g. SPGI pdf reports). It will also be able to process user-provided documents.
- The tool searches **text** and also parses data from **tables**.
- In future releases, the tool may also allow authorized users to correct the data for their organization. We may also look into crowdsourcing the validation of the information as feedback for the algorithms training.



Starting Point

- NLP toolkit benefited at the onset from two solutions provided by Allianz and IDS: A machine learning and a rule-based approach that aim at extracting a set of climate related KPI from Oil and Gas and XXXX sectors.
- The NLP team is building on top of those two assets to expand in terms of KPIs and also in terms of sectors.
- A tool (interface) will also be built in a second phase once the algorithms have been thoroughly tested and standardised
- We will also work on the combination of the results from the two approaches (Waterfall logic)

Project and code management on GitHub

Current Approaches

ML SOLUTION

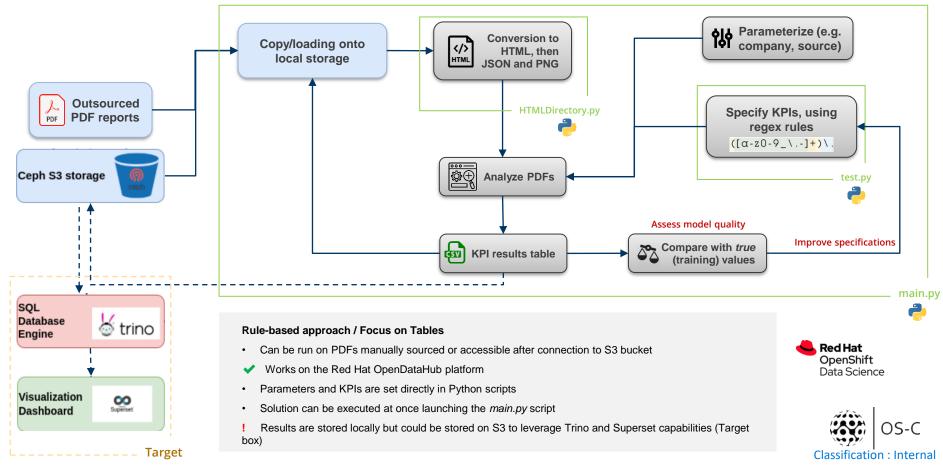
ML-based approach / Focus on Text

	Module / Status	Text	Table
	Extraction	×	1
Model Application	Relevance Detection	×	×
	KPI Inference	×	1
	Curation	×	×
Model Training	Relevance Detector Training	•	*
	KPI Inference Training	×	1

Works

- Works, but improvements needed
- · Whole process can be executed at once
- Easily scalable to more KPIs
 - For each new KPI: Training data and testing needed

RB SOLUTION


Rule-based approach / Focus on Tables

	Module / Status	Text	Table
Model Application	Parsing PDFs / Conversion	•	*
	Detection of Text and Tables	~	*
	KPI Extraction	1	×
Model evaluation (comparison)		×	×
✓ Works			

- Works, but not tested yet
- · Whole process can be executed at once
- Easily scalable to more KPIs
 - For each new KPI: Rule definition and testing needed

os-c Rules-based Engine Architecture

Rules Engine: Live Demo

ML tool environment, pipeline and output

Please Use Raise Hand or Type Question in Chat

Physical Risk

OS Climate Technical Deep Dive

Matt Sandoe, Climate Risk Lead, BNP Paribas Joe Moorhouse, Quantitative Analyst, BNP Paribas Nikolaos Dimakis, Quantitative ESG Developer, Federated Hermes

December 1st 2021

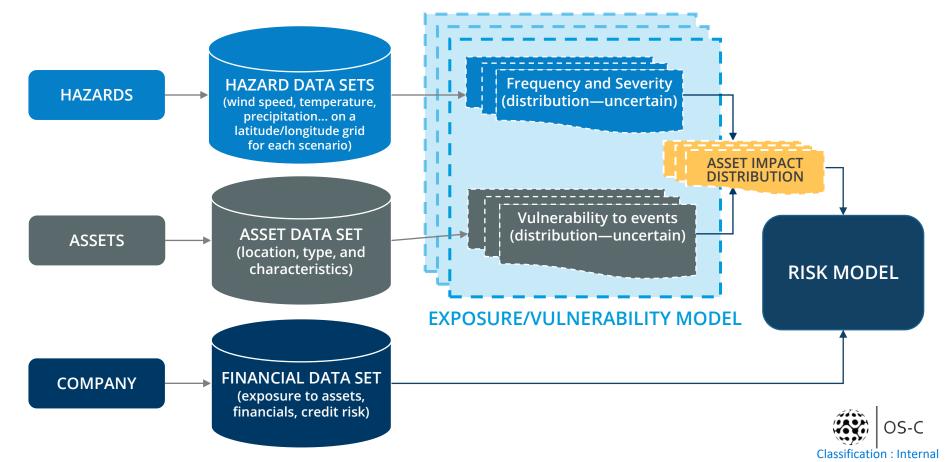
OS-CLIMATE VISION

Open source, plug & play physical risk tool and development ecosystem

A common language/framework with transparency at its core

BENEFITS & GOALS

Helping industry to develop and apply modelling, data and disclosure standards for corporates and financial institutions


- Support the financial industry in its investment/lending decisions
- Provides a bridge between the research community, practitioners and decision makers in business and finance

Leveraging the customizable and widely-accessible physical risk toolkit

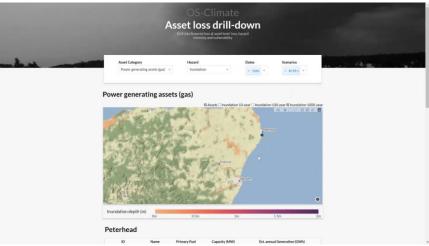
- Benefiting from the anticipated growth in open-source asset and company data availability
- Opportunity for data and analytics providers to participate in pre-competitive layers to accelerate commercial developments
- Continuous addition and improvement as community expands

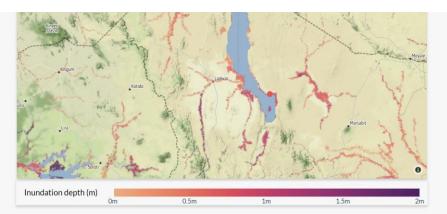
🛞 👓 Physical risk modelling framework

OS-C Physical risk methodology summary

• Core elements adopted from Oasis LMF (catastrophe model)

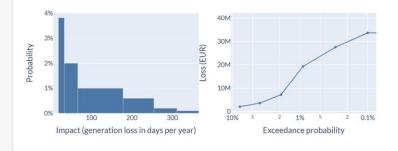
- 1. Use of *primary* and *secondary* probability distributions
- 2. Use of *non-parametric* distributions
- 3. Explicit calculation of 'effective damageability distributions'
- Why this is appropriate for Physical Risk use cases
 - Common interface: facilitates sharing e.g. vulnerability information
 - Flexibility to accommodate ecosystem of models
 - Computational performance
 - Ability to accommodate both simple and complex models
 - The above elements *enable* the construction of simple models bridging on-site / 'light-touch' bulk-assessment


- Build flexible and start simple; not too simple
 - Need more than qualitative measures, e.g. scores
 - Need result in EUR (/USD etc) as common unit
 - Otherwise we cannot aggregate and compare risks
 - How can we compare a 100 MEUR asset at low risk with a 1 MEUR asset at high risk?
 - How can we compare a business disruption from flood with a risk of damage from wildfire?
 - Does not necessarily imply sophisticated economic model
- In general, our results are probability distributions
 - Exceedance curves as well as mean loss
 - Small probabilities of large losses
 - Stranded assets



Requirements 2/2

- Exceedance probability curve
 - at asset level
 - aggregated to portfolio level
- Example for a WRI model developed for EBRD power-generating assets

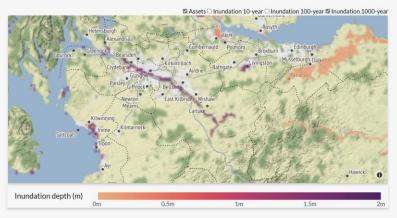


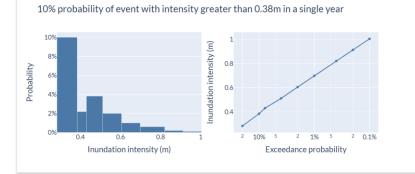
Turkana 1

ID	Name	Primary Fuel	Capacity (MW)	Est. annual Generation (GWh)
WRI12541	Turkana 1	Gas	102	394.4

5% probability of annual loss greater than 29.2 generation days

	OS-C	Primary	uncertainty
--	------	---------	-------------


H


- Probability of experiencing a hazard event of certain intensity
 - In a given time-frame
 - Driven by a specific scenario
 - Under a set of modelling assumptions

• Already very useful!

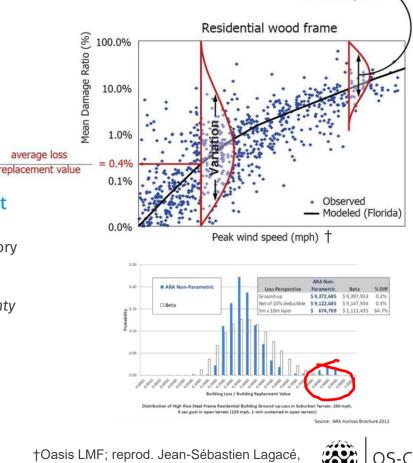
- Ecosystem of hazard models in one place
- Jupiter Intelligence hazard set
- Accessible in ways optimized for Physical Risk (modelling and visualization)
- Probability distributions in locale of asset

Power generating assets (gas)

Variation depends on wind speed

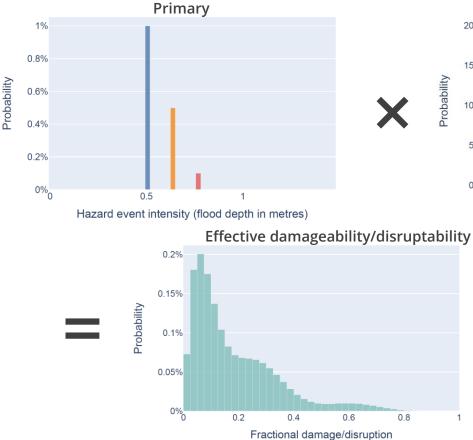
os-c Secondary uncertainty

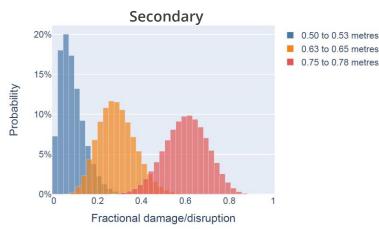
• Vulnerability as a matrix


1600

- May be multi-modal
- Sources of uncertainty are a mixture
 - Aleatory ('truly random')
 - Epistemic (could know, but don't)

• Epistemic important for physical risk bulk-assessment


e.g. flood risk for large portfolio of residential properties


- We might not know if a property is a mobile home or is 3 story with pile foundations
- It might not matter (i.e. not the portfolio's main risk-driver)
- With vulnerability matrix we can include epistemic uncertainty to find out

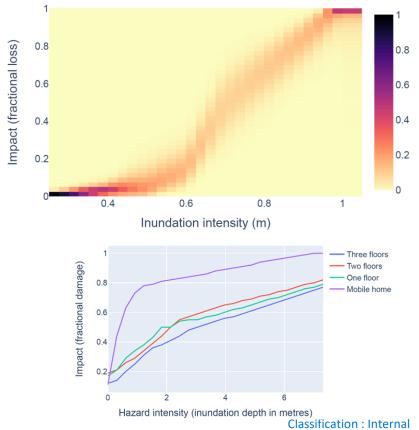
Catastrophe Modeling, 2008 – Université Laval Classification : Internal

Solution Content of the second second

Can described as:

- a *convolution* or
- a matrix multiplication with the vulnerability matrix

Option of *Monte Carlo sampling* from effective damageability distribution


Simple modelling approaches

Examples:

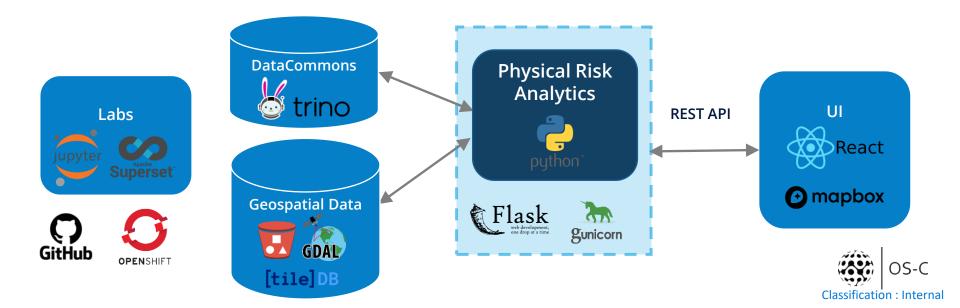
- 1. WRI power generating assets
 - Aims to bridge gap between onsite assessment and 'light-touch' bulk assessment

2. FEMA FAST

- Provides detailed content/inventory/structure impacts for different categories
- Can handle the case where there is (epistemic) uncertainty as to category by assuming a *prior distribution*

Vulnerability from damage curve or with uncertainty

Solution Not a system in isolation


- Climate change alerts can be integrated and assets affected, highlighted
- Example data sources:
 - Flooding: GDACS, DFO
 - Drought: Drought monitor (NOAA)
 - Fire: FIRMS
 - Etc.

Choice of technologies

- Overview of stack (see DataCommons Deep Dive for more details)
 - Transfer to institutions' internal systems
 - Accessible choices
- A number of PoCs in flight; not set in stone!

Please Use Raise Hand or Type Question in Chat

Implied Temperature Rise Model (ITR)

OS-Climate – Technical Deep Dive

Jared Westheim (Goldman) Leyla Javadova (Allianz) Ruben Haalebos (LSEG) Joris Cramwinckel (Ortec Finance)

December 1st 2021

Classification : Interna

COP 26 Portfolio Alignment recommendations can be advanced by an open source tool to help drive convergence and transparency in portfolio alignment methodologies

"OS-C is establishing an Open Source collaboration community to build a software platform that will dramatically boost global capital flows into climate change mitigation and resilience."

In collaboration with Academia, NGOs, Investors, and Commercial data providers, the aim is to aggregate the best available data, modelling, and data science to enable powerful applications for climate-integrated investing.

ITR Workstream Participants

Mission

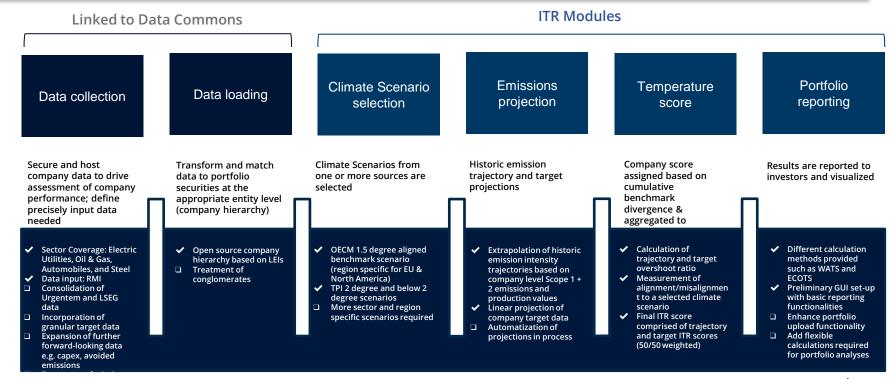
- Build an open source ITR tool based on the recommendations set out by Portfolio Alignment Team
- The tool shall be transparent, dynamic and science-based
- Incorporate and cross compare multiple benchmarks
- Incorporate backward-forward looking data
- Be sector specific
- Ultimately cover all sectors within a portfolio

> Climate crisis requires not only emission reduction to net-zero, but also keeping cumulative emissions within a defined carbon budget.

- > ITR is a forward-looking management tool that facilitates the evaluation of how individual investment decisions can contribute to long-term climate goals.
- > A variety of inconsistent methods have emerged that produce incompatible results. A transparent and open source model will facilitate the wider application of the tool and methodology improvement over time.

Tool Setup

Leyla Javadova (Allianz) Ruben Haalebos (LSEG)



Modules

Module focus

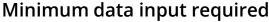
OS-C TOOL ARCHITECTURE

Six modules developed in parallel to provide an end to end demonstration tool

OS-C

DATA INPUT AND COVERAGE

The ITR can be enhanced further to include further forward-looking data such as capex relevant data on green and brown activities.


Data Contributors

LSEG URGENTEM!

RMI Self-extracted Data

- We have identified the minimum data required to run the ITR tool for four highest emitting sectors: Utilities, Steel, Oil and Gas and Automobiles
- Long-term we recommend creating an open source database with the minimum data required enabling full transparency on raw data
- The NLP Workstream set out by OS-Climate aims to extract the required data from Annual and Sustainability reports of companies with the objective to build such an open source database
- Going forward scope 3 emissions of companies should be included as well

Fundamental Data	Company Name LEI
	ISIN
	Country
	Region Industry ISIC
	EVIC
Target Data	Source of the Target Data
	Target Type (Absolute/Intensity)
	Base year of the target End year of the target
	Target reduction from base year in %
	Target Scope (Scope 1, 2 Emissions)
	Target Units (e.g. CO2e per tons of steel produced)
Emission Data	Scope 1 Emissions in tons of CO2e
	Scope 2 Emissions in tones of CO2e
	Scope 1 Emissions in tons of CO2e (timeseries for the past 5 years) Scope 2 Emissions in tones of CO2e (timeseries for the past 5 years)
Production Data	Steel Production in total (tons of steel producred in metric tons)
Annnual total production values required	Steel Production in total (timeseries for the past 5 years)
	Electricity Produced (electricity produced in gigajoules) / or in MWh Electricity Produced (timeseries for the past 5 years) Automobiles (in passenger km)
	Automobiles (timeseries for the past 5 years)
	Oil & Gas in total (in barrel of oil & gas produced) / or in PJ/MJ Oil & Gas in total (timeseries for the past 5 years)

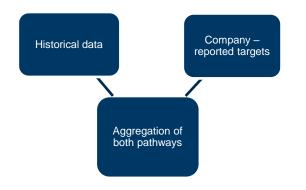
CLIMATE SCENARIO SELECTION

OECM 1.5 degree aligned Benchmark

The OECM is a 1.5°C model developed by members of the UN Net-Zero Asset Owner Alliance in collaboration with academics and experts from various sectors. The output of the OECM model can be translated to granular sector pathways with precise carbon emissions and carbon/energy intensity reduction needs to reach net zero by 2050.

Cumulative energy-relate Note (A): Energy Statisti	-	· · · · · · · · · · · · · · · · · · ·		owns diffe	r - emissior	ns theref	ore will nc	t add up.			
	World			OEC	D North Ame	rica	Share global emissions	I OECD Europe			Share global emissions
	2017-2030	2017-2050	Sector [%]	2017-2030	2017-2050	Sector	[%]	2017-2030	2017-2050	Sector [%]	[%]
Industry	71,7	94,2	24%	6,7	8,0	13%	8,5%	5,5	7,5	19%	8%
- Cement	8,3	11,5	3%	0,3	0,4	1%	3%	0,6	0,9	2%	8%
- Steel	23,4	30,3	8%	1,1	1,4	2%	5%	1,6	2,1	5%	7%
Transport	78,0	90,7	23%	21,5	23,6	37%	26%	9,1	9,8	24%	11%
- Aviation	4,1	4,9	1%	1,9	2,2	3%	44%	0,3	0,3	1%	6%
- Navigation	2,0	2,6	1%	0,3	0,4	1%	14%	0,2	0,2	1%	8%
- Road	67,6	77,7	20%	17,8	19,3	31%	25%	7,9	8,5	21%	11%
Power	113,2	137,5	35%	17,5	18,7	30%	14%	9,2	11,6	29%	8%
- Utility	192,7	261,4	66%	38,9	45,3	72%	17%	21,6	30,1	74%	12%
Energy Sector	345,0	421,3	106%	60,8	68,1	108%	16%	34,0	41,1	102%	10%
Buildings/other sectors	36,6	46,5	12%	7,0	7,7	12%	17%	6,9	8,5	21%	18%
other conversions	20,3	27,2	7%	4,4	5,1	8%	19%	2,4	3,1	8%	11%
Total actual CO ₂ emissions	320,0	396,0	100%	57,0	63,1	100%	See (A)	33,1	40,5	100%	See (A)

TPI 2 degrees and below 2 degrees benchmark


The Transition Pathway Initiative (TPI) is a global initiative led by asset owners and supported by asset managers with the aim to assess company preparedness for the transition to a low-carbon economy. The benchmark information provided by TPI are based on the Sectoral Decarbonization Approach (SDA). Sectoral emissions are normalized by a relevant sectoral activity which results in benchmark path for emissions intensity in each sector.

	2°C benchmark						below 2°C benchmark									
sectors	2014	2020	2025	2030	2035	2040	2045	2050	2014	2020	2025	2030	2035	2040	2045	2050
Oil and Gas	65,57	60,29	55,9	48,21	40,08	33,43	27,27	21,7	65,57	58,74	53,04	43,45	33,95	24,41	15,98	9,98
Steel	1,669	1,498	1,37	1,13	0,954	0,813	0,677	0,62	1,669	1,325	1,046	0,815	0,597	0,477	0,375	0,263
Electric utilities	0,586	0,457	0,36	0,245	0,151	0,097	0,056	0,04	0,586	0,44	0,33	0,229	0,141	0,072	0,02	-0,008
Auto	147	113	94	77	64	56	50	43	147	113	68	40	24	15	10	6

OS-C FORWARD-LOOKING PROJECTIONS

Methodology

- Each projection is weighted according to the sector's historical probability of achieving its targets
- If the company has no reported target, only the historical evolution of intensity is used

TCFD Recommendation:

- Use company disclosed targets and historical emissions (or near-term Capex plans)
- Projections should incorporate multiple data sources
- Weighting between different data sources should be based on credibility

DATA AND CONSTRAINTS

Projections are based on carbon intensities:

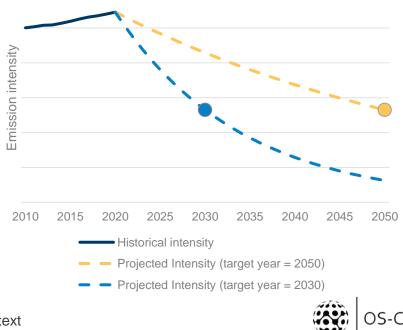
 $CI = \frac{Emissions}{Production}$

Data cleaning and processing steps:

- Matching data using a single company identifier
- Harmonization of target database
- Correcting extreme or abnormal values
- Interpolation where necessary

Data name	Data description	Data Source
Company emissions	Scope 1 and Scope 2 historical emissions	Urgentem
Company production	Company-level production, unit dependant on the company's sector	Refinitiv
Company targets	Company reported emissions targets	FTSE Russell

PROJECTION USING TARGETS


What constitutes a target?

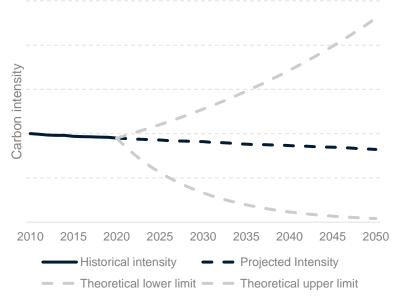
- Base year
- Target year
- Planned reduction

If the target year is not 2050:

- Data is projected until the target
- Data is projected forward to 2050 using the observed rate of reduction

Emission intensity projection based on target data

Classification : Internal



PROJECTION USING HISTORICAL DATA

The intensity is projected forwards using its historical variation:

 $I_(t+1)=I_t*(1+\Delta I_hist)$

 ΔI_{hist} is the YoY variation of intensity, it is limited between [-10%, 3%] annual change to prevent extreme variations Emissions intensity projection based on historical data

Limitation: past behavior is the predictor of future evolution

ITR CALCULATION

ITR model translates an assessment of alignment/misalignment with a benchmark in the form of a temperature score

- 1. For the ITR calculation, company emissions must be compared to scenario pathways on a cumulative basis (emissions are summed up from the base year to 2050 for trajectory-based and target-based pathways).
- 2. Next cumulative emission benchmark overshoot ratio is calculated by dividing the cumulative emissions of trajectory or target-based pathways by cumulative emissions of the selected climate scenario.
- 3. Subsequently, TCRE is applied for the final calculation.
- 4. Two final ITR scores are generated, the trajectory ITR score and the target ITR score. Both equally weighted and combined generate the final ITR score.

ITR calculation for the trajectory and targets:

```
ITR(c, trajectory)
= BMtemp + (Overshootratio(c, trajectory) - 1) * TCRE
* Carbonbudget/3664
ITR(c, target) = BMtemp + (Overshootratio(c, target) - 1) * TCRE
* Carbonbudget/3664
```

The two ITR's can be combined using a company-specific probability measure for the estimated likelihood that the target will be reached:

```
ITR(c) = p(c) * ITR(c, target) + (1 - p(c)) * ITR(c, trajectory)
```

TCRE application

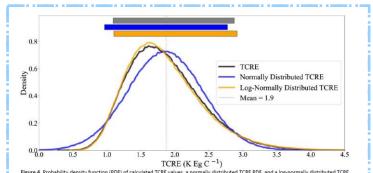
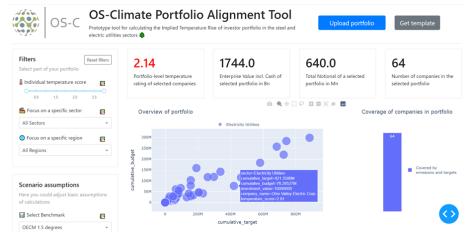


Figure 4. Probability density function (PDF) of calculated TCRE values, a normally distributed TCRE PDF, and a log-normally distributed TCRE PDF, the latter two based upon the mean and standard deviation of calculated TCRE values. Each bar designates a 5%–55% confidence interval, the grey bar corresponding to the calculated TCRE; the blue bar corresponding to a normally distributed TCRE and the orange bar corresponding to a log-normally distributed TCRE. Source: Spafford & MacDougall (2020).

TCRE stand for transient climate response to cumulative carbon emissions. It represents the proportionality between global temperature change and cumulative CO2 emissions. The OECM benchmarks assume a remaining energy-related carbon budget with 66% likelihood of staying below 1.5 degrees. Thus, the TCRE value is set at 2.2.



ITR report can be generated via the user interface and/or via the ITR tool code, which will be open source

The tool generates:

- Issuer level ITR scores
- Multiple calculation options
- Sector heat maps
- Best and worst contributors
- Going forward, the aim is to build a functionality where the user can upload proprietary input data and run the tool accordingly via the online user interface

Tool Design

Joris Cramwinckel (Ortec Finance)

<u>Persona's</u> Portfolio Manager Quant Consultant

User story #1

As a portfolio manager, I want to assess my asset and lending portfolio with the ITR methodology such that I can report its climate impact to stakeholders

User story #2

As a Quant, I want to research the ITR methodology such that it can be used in our models

User story #3

As a consultant, I want to run analysis with the ITR methodology such that I can advise my clients

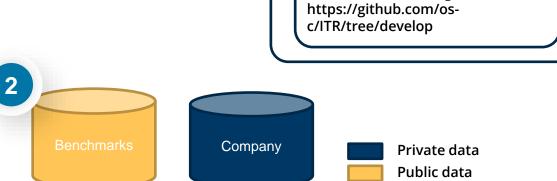
Classification : Internal

ITR TOOL WORKFLOW

3

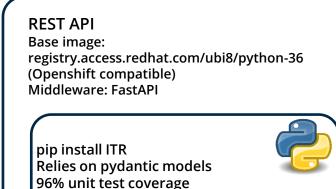
1					
		.npany_name	company_id	company_isin	investment_value
	0	Company AG	US0079031078	US0079031078	35000000
	1	Company AH	US00724F1012	US00724F1012	1000000
	2	Company AI	FR0000125338	FR0000125338	1000000
	3	Company AJ	US17275R1023	US17275R1023	1000000
	4	Company AK	CH0198251305	CH0198251305	1000000

REST API Base image: registry.access.redhat.com/ubi8/python-36 (Openshift compatible) Middleware: FastAPI


pip install ITR Relies on pydantic models 96% unit test coverage https://github.com/osc/ITR/tree/develop

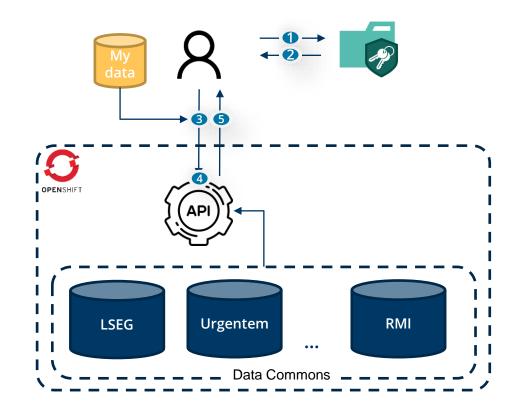
4				
_	ompany_name	time_frame	scope	temperature_score
0	Company AG	LONG	S1S2	2.05
1	Company AH	LONG	S1S2	2.22
2	Company AI	LONG	S1S2	2.06
3	Company AJ	LONG	S1S2	2.01
4	Company AK	LONG	S1S2	1.93
5	Company AL	LONG	S1S2	1.78
6	Company AM	LONG	S1S2	1.71
7	Company AN	LONG	S1S2	1.34
8	Company AO	LONG	S1S2	2.21

- 1. Input Portfolio
- 2. Required data to run
- 3. Run (stateless) split second
- 4. Slice and Dice result object



DEPLOYMENT OPTIONS

- Run Python code locally
 - pip install ITR
- Run in Jupyter Notebook possibly with Dash (e.g. local or Google Colab, Sagemaker, AzureML, etc)
- Run API catering third party apps or Front-ends
 - local or in any kubernetes platform



https://github.com/os-c/ITR/tree/develop

WHAT IF: I DON'T HAVE ACCESS TO COMPANY DATA?

- 1. Provide credentials
- 2. Get JWT
- 3. Post Request (portfolio, and optionally own data)
- 4. Amend my data with data commons and process
- 5. Response based on JWT authorization:
 - Temp scores (black box)
 - Temp scores + intermediate results (grey box)
 - Full data dump (crystal box)

Optional user provided climate data Climate data with federated access

2022 Portfolio Alignment Outlook

Leyla Javadova (Allianz)

os-c Portfolio Alignment Outlook for 2022

Tool Testing

- Portfolio level testing (AZ, GS, OF, GFANZ, AOA)
- Perform UAT

Business Requirements

- Adapt sector mappings (ISIC, NACE)
- Update climate pathways
- Enhance target projections
- Inclusion of Scope 3 emissions
- Missing data treatment
- Incorporation of further forwardlooking data

Go-live

- Methodology Handbook
- Code finalization
- GUI go-live

Tool Development

- Automatized projections
- Enhance data upload template
- Open source GUI set-up

Please Use Raise Hand or Type Question in Chat

Thank You!

Join us on Thursday, December 2nd, 11:00 AM – 12:00 PM EST

Learn more about Transition Risk and the tools being contributed to the OS-Climate platform by Airbus. The event will feature demos on:

- SoSTrades platform
- WITNESS

Interested in Learning More: https://os-climate.org/contact-us/

